Четверг, 23.11.2017, 16:03
Приветствую Вас Гость | RSS
Главная » Статьи » Рынок Недвижимости

Индекс стоимости Жилья
Логически индекс стоимости жилья есть ни что иное, как описанная выше функция G(t), которая является показателем общего уровня цен на жилье в данном городе. Это ни есть цена какой-то отдельной квартиры. Индекс стоимости - общерыночный показатель, по своей структуре описывающий общие тенденции рынка к росту или снижению цен.

Прежде всего, следует принять во внимание, что функции оценочных корректировок Lk (pi) могут носить разный характер. Одни из них действительно являются аддитивными, как скажем поправка на наличие или отсутствие телефона или стоимость ремонта на 1 кв.м. площади. Но большинство поправок носят мультипликативный характер, то есть это не прибавление к стоимости фиксированной величины, а умножение на коэффициент. Поэтому величины Li (pi) распадаются на две части и приведенная выше символическая формула принимает более практичный вид

 

Ck (t, pi) = Ak (pi) * G(t) + Bk (pi)

 

Где Ak (pi) и Bk (pi) описывают мультипликативные и аддитивные локальные корректировки соответственно. При этом для каждого i-ого параметра квартиры, как правило, есть корректировка либо одного либо другого типа.

Написанное выше выражение представляет собой масштабную систему из k уравнений, где k – рассматриваемое единомоментно количество квартир. Для московского рынка жилья это от нескольких тысяч до нескольких десятков тысяч квартир, в зависимости от выбранных баз данных и расчетного шага (еженедельно, ежемесячно, ежеквартально). Это количество уравнений умножается еще на количество периодов (например, недель), в течение которых рассматривается модель. Другими словами, сформулированная задача достаточно сложна и практически не решаема точным образом. Поэтому ее решение требует использования тех или иных приближений.

Существует два принципиальных подхода к построению приближений. Первый состоит в построении приближенных зависимостей Ak(pi) и Bk(pi) для каждого отдельного параметра на основании статистики за определенный период. Таких как, например, функция спада цены квартиры от расстояния до метро или функция  цены от площади кухни и т.п. В результате зная эти функции и набор цен квартир Ck(t, pi) в данный момент времени можно вычислить набор Gk(t), для данного момента времени.

В идеале все Gk(t), вычисленные таким образом, должны совпадать. На практике же наблюдается разброс этих значений для разных квартир, что и является следствием приближения. Если полученный разброс не очень велик, то это служит показателем адекватности подбора функций Ak(pi) и Bk(pi). В итоге значение функции G(t) - индекса стоимости на текущую дату – можно вычислить, например, путем усреднения:

 

G(t) = < Gk(t) >

 

где символы < > означают операцию усреднения по всем квартирам текущего периода.

Проведение подобного расчета на разные даты приводит к получению зависящей от времени функции G(t). Каждое значение G(t) связано с предыдущими благодаря общему набору функций Ak(pi) и Bk(pi). Чем больший срок взят для анализа статистики при вычислении этих функций, тем более гладкой получится итоговая кривая G(t). И тем сложнее будет согласовать вид функции Ak(pi) и Bk(pi). Поэтому следует использовать некий оптимальный период.

Регулярно обновляя функции Ak(pi) и Bk(pi) по мере появления новой статистики можно достичь большей точности расчетов. Это позволяет учесть, в том числе, и  ту самую слабую зависимость этих величин от времени, а также более плавно связать между собой значения индекса стоимости за разные даты. Такая структура алгоритма является одной из основных причин, устраняющих статистические скачки индекса стоимости.

В этом и состоит очень важное различие между технологией вычисления средней цены и технологией расчета индекса стоимости. Средняя цена вычисляется путем операции среднего значения по данным текущего периода. Значение следующего периода вычисляется уже по отдельной базе, никак не связанной с базой предыдущего периода. Поэтому значения за разные даты статистически не связаны и испытывают скачки. В технологии расчета индекса стоимости эта связь восстановлена, благодаря чему каждое значение определяется набором предыдущих, что во многом гасит статистический шум.

Второй подход к построению приближений состоит в следующем. Минуя расчет функций Ak(pi) и Bk(pi) напрямую приближенно вычисляется значение функции G(t), а уже на основании него – корректировки Ak(pi) и Bk(pi). Этот подход более созвучен вычислению средней цены. Хотя и обладает теми же недостатками. Если мы усредним исходную формулу, то получим следующее выражение:

 

<Ck (t, pi)> = <Ak (pi)> * G(t) + <Bk (pi)>

 

где символы < > означают операцию усреднения по всем квартирам текущего периода. Функция G(t) при этом, разумеется, является общей для всех квартир.

Даже в этом виде функция G(t), и средняя цена C (t) = <Ck (t, pi)> - разные вещи. Они могут отличаться на постоянное слагаемое или на коэффициент. Чтобы все же окончательно свести G(t) к средней цене, следует использовать условия нормировки:

 

<Ak (pi)> = 1

 

 

<Bk (pi)> = 0

 

Тогда индекс стоимости станет средней ценой. Но только для одной даты. Потому что написанные выше условия нормировки могут выполняться для данных за один период, но уже не будут выполняться (по крайней мере точно) за другой и все последующие. Поэтому за каждый следующий период средние значения функций корректировок начнут отклоняться от 1 и 0, в результате чего между индексом стоимости и средней ценой начнет появляться разница. Та самая разница, которая в рассмотренном ранее приближении возникала за счет связи баз за разные периоды и уменьшала статистический шум.

Это происходит из-за того, что вычисление средней цены и оценочных корректировок Ak(pi) и Bk(pi) во многом синхронно. Скачок средней цены вверх возникает из-за наличия в базе данного периода большего количества дорогих квартир. А значит больше квартир с положительными корректировками и средние значения корректировок в этом случае выше 1 и 0. А отношение завышенной средней цены и завышенных корректировок приводит к относительной стабильности функции G(t). Именно этот механизм отсутствует при прямом вычислении средней цены, в результате чего остаются скачки.

Использование второго приближенного подхода в меньшей степени гасит статистический шум индекса стоимости или вообще не гасит, если не пересчитывать каждый раз оценочные корректировки. Эта проблема становится особенно актуальной, когда индексы вычисляются не для города в целом (на большой статистике), а для узкого сегмента, например, одного района. В этом случае (если нет желания или возможности проделывать целиком весь расчет) в соответствии с представлениями об инертности рынка недвижимости можно использовать те или иные сглаживающие алгоритмы.

Хорошо это или плохо – вопрос философский. Кто-то считает, что подобная искусственная модернизация исходных данных недопустима. И предпочитает прямой расчет средней цены по простой формуле. Но этот формально правильный подход может часто давать совершенно неадекватные результаты. Например, выдавать статистические выбросы за взлет цен в одном месяце и спад в следующем. Подобно тому, как нагретый ярким солнцем градусник может на морозе показывать плюсовую температуру. Поэтому представляется более правильным корректировать прямые вычисления, в том числе и использовать сглаживание в тех случаях, когда на инертном рынке получаются очевидные статистические скачки.




Категория: Рынок Недвижимости | Добавил: AdmiN (25.06.2010)
Просмотров: 572 | Теги: Индекс стоимости жилья, Title
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Категории раздела
Рынок Недвижимости [17]
Зарубежная Недвижимость [16]
Наш Дом-Советы и Статьи [16]
Поиск
Наш опрос
Оцените мой сайт
Всего ответов: 23
Друзья сайта
  • Много вареза
  • Все для людей!!!
  • Сайт об авторском кино!!!
  • В мире авто!!!
  • Рокмузыка forever
  • Cайт для мамочек
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0